a2 United States Patent

Hu et al.

US009454567B2

10) Patent No.: US 9,454,567 B2
45) Date of Patent: Sep. 27,2016

(54) GRAPH DATABASE QUERY HANDLING
METHOD AND APPARATUS

(71) Applicant: Fujitsu Limited, Kanagawa (JP)

(72) Inventors: Bo Hu, Cambridgeshire (GB); Nuno
Carvalho, London (GB)

(73) Assignee: FUJITSU LIMITED, Kawasaki (JP)

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 227 days.

(21) Appl. No.: 14/229,158
(22) Filed: Mar. 28, 2014

(65) Prior Publication Data
US 2014/0297621 Al Oct. 2, 2014

(30) Foreign Application Priority Data
Mar. 28, 2013 (EP) ceceoeneerverrrecctccrcen 13161804
(51) Imt.CL
GO6F 17/30 (2006.01)
(52) US. CL

CPC ... GO6F 17/30424 (2013.01); GO6F 17/30436
(2013.01); GO6F 17/30451 (2013.01); GO6F
17/30469 (2013.01); GOGF 17/30545
(2013.01)
(58) Field of Classification Search
CPC ..ot GOG6F 17/30424; GOG6F 17/30451
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2013/0262443 Al* 10/2013 Leida ............... GOG6F 17/30427
707/722

FOREIGN PATENT DOCUMENTS

CN 201411730 4/2012
KR 10-0902650 6/2009

OTHER PUBLICATIONS

Extended European Search Report dated Mar. 24, 2014 in corre-

sponding Furopean Patent Application No. 1316804.3.

“Database Foundations for Scalable RDF Processing”, Hose et al,
Reasoning Web 2011, LNCS 6848, 2011, pp. 202-249.

“Querying Distributed RDF Data Sources with SPARQL”, Quilitz
et al, ESWC 2008, LNCS 5021, 2008, pp. 524-538.

“SPIDER: A System for Scalable, Parallel/Distributed Evaluation of
large-scale RDF Data”, Choi et al, CIKM’09, Hong Kong, China,
Nov. 2009, pp. 2087-2088.

“Heuristics-Based Query Processing for Large RDF Graphs Using
Cloud Computing”, Husain et al, IEEE Transactions on Knowledge
and Data Engineering, vol. 23, No. 9, Sep. 2011, pp. 1312-1327.
“OptARQ: A SPARQL Optimization Approach based on Triple
Pattern Selectivity Estimation”, Bernstein et al, Technical Report
No. ifi-2007.03, Mar. 2007, 19 pp.

* cited by examiner

Primary Examiner — Apu Mofiz
Assistant Examiner — Cindy Nguyen
(74) Attorney, Agent, or Firm — Staas & Halsey LLP

(57) ABSTRACT

A querying method for a database of graph data encoded as
triples being stored on storage servers. The method includ-
ing dividing a query into a plurality of result criteria triple
patterns which query results match, each triple pattern
element being either: a single value triple pattern element; or
a variable value triple pattern element specifying an ID of a
variable. The method includes forming one or more sub-
queries each having triple patterns having the same single
value triple pattern element or specifying the same ID of a
variable as a variable value triple pattern element, issuing
each formed sub-query to each of the servers, and receiving
triples satisfying a sub-query as results from the servers and
using the sub-query results in as a response to the query.

11 Claims, 5 Drawing Sheets

Y

[ Divide guery into
result criteria

v

%

4 . N
Form sub-queries
from result criteria

Vv

to stora

“

4 . N
issue sub-gueries

ge servers

v

[ Gather
resulis

hstorage servers

sub-guery
from




U.S. Patent Sep. 27, 2016 Sheet 1 of 5 US 9,454,567 B2

Divide query into
resuit criteria

ﬁ

Form sub-queﬂes
from result criteria

ﬁ

to storage servers

E

results from
storage servers

issue sub-queﬂes ]

[Gather su b-query

FIGURE 1



U.S. Patent Sep. 27, 2016 Sheet 2 of 5 US 9,454,567 B2

Master Server

SPARQGL
interface

Quary
Partitiorser

&
4 Global Storage L acat o
& . o0 #2535 S RS BTy
L ayer JLocw ) Map/Heduce
; oA L&}f&r

——— Layar
i ot

p— Siave Server

e )
- Ry

toral | MapReducs ||
Sarags Layer e
Ly : g;

Stave Sorver

Lol MapfReduce
Layer ' 3
e ;: l

FIGURE 2



U.S. Patent Sep. 27, 2016 Sheet 3 of 5 US 9,454,567 B2

FIGURE 3



U.S. Patent Sep. 27, 2016 Sheet 4 of 5 US 9,454,567 B2

FIGURE 4



U.S. Patent Sep. 27, 2016 Sheet 5 of 5 US 9,454,567 B2

Subg&mh a

égubmgrag}h 2

Sub-graph 3

FIGURE 5



US 9,454,567 B2

1

GRAPH DATABASE QUERY HANDLING
METHOD AND APPARATUS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of European Applica-
tion No. 13161804.3, filed Mar. 28, 2013, in the European
Intellectual Property Office, the disclosure of which is
incorporated herein by reference.

BACKGROUND

1. Field

The present invention lies in the field of data mining and
in particular relates to the handling of graph database
queries.

2. Description of the Related Art

Performance bottle necks in distributed computing envi-
ronments include communication network bandwidth and
processing capability. When distributing query evaluation of
queries such as SPARQL (SPARQL Protocol and RDF
Query Language) queries, a significant increase of network
traffic is caused by intermediate results being fetched and
forwarded to processing servers for joint operation. In
complicated query patterns (with multiple joint variables),
this can lead to a large number of data being transferred
between devices, many of which will not be included in the
final query results, and thus represent unnecessary network
traffic. Furthermore, processing bottlenecks can be caused
by requiring particular processing servers to perform a series
of search operations on a large search space.

SUMMARY

Additional aspects and/or advantages will be set forth in
part in the description which follows and, in part, will be
apparent from the description, or may be learned by practice
of the invention.

Embodiments of the present invention include a querying
method for a database of graph data encoded as triples, the
triples each comprising values of three triple elements and
being stored on a plurality of storage servers, the method
comprising:

a dividing step comprising dividing a query into a plu-
rality of result criteria, the result criteria comprising a
plurality of triple patterns which some or all query results
must match, each triple pattern is composed of three triple
pattern elements each corresponding to a different one of the
three triple elements. Each triple pattern element is either a
single value triple pattern element specifying a single value
of the corresponding triple element which triples must have
to match the triple pattern, or a variable value triple pattern
element specifying an ID of a variable, the ID being attrib-
uted to values of the corresponding triple elements of triples
matching the triple pattern. The method further comprises a
sub-query forming step comprising, forming one or more
sub-queries each comprising two or more triple patterns
having the same single value triple pattern element or
specifying the same ID of a variable as a variable value triple
pattern element; a sub-query issuing step comprising issuing
each formed sub-query to each of the plurality of storage
servers; and a query result preparing step comprising receiv-
ing triples satisfying at least one formed sub-query as
sub-query results from the plurality of storage servers and
using the sub-query results to prepare query results as a
response to the query.

10

15

20

25

30

35

40

45

50

55

60

65

2

A triple element refers generically to either subject,
object, or predicate. Particular instances of a triple element
are referred to as values of triple elements. For example, the
three triple elements may be subject, object, and predicate,
so that a particular triple has a value of each of subject,
object, and predicate. The entity being described may be
referred as the subject of the triple, the range of the identified
property may be referred to as the object, and the relation-
ship between the range and the entity may be referred to as
the predicate. The triples provide for encoding of graph data
by characterizing the graph data as a plurality of subject-
predicate-object expressions. For example, the subject may
denote a Web resource (for example, via a URI), the
predicate denote a particular trait, characteristic, or aspect of
the resource, and the object denote an instance, range, or
example, of that trait, characteristic, or aspect. In other
words, a collection of triple statements intrinsically repre-
sents directional graph data. The RDF standard defines a
formalized structure for such triples, and the triples in
embodiments of the present invention may be RDF triples.

The dividing step may comprise a logical analysis of the
received query by applying a series of processing rules to the
received query to extract the result criteria which triples
must satisfy to be included in the query results.

A triple pattern comprises three triple pattern elements,
each of which correspond to a triple element. Each triple
pattern element is either bound (single value triple pattern
element) or unbound (variable value triple pattern element).
A variable 1D is attributed to unbound triple pattern ele-
ments, so that values (instances) of the unbound triple
element are attributed the variable ID when the triple pattern
results are stored and processed (or when the results of the
sub-query to which the triple pattern belongs are stored).

The sub-query forming step provides a mechanism by
which to combine triple patterns which are logically linked
via one or more triple pattern elements. Copies of the triple
patterns are used since any particular triple pattern may
appear in more than one sub-query. The logical link between
two triple patterns may be the same bound value of a
particular (i.e. one of subject or object or predicate) triple
pattern element, or a variable ID which appears in both triple
patterns (regardless of whether it is as subject, predicate, or
object). Triple patterns linked via a variable ID mutually
restrict the set of triples which match one another, and thus
are interdependent.

The receipt of the sub-query results provides a mechanism
to reduce the processing required to find query results.
Conventional methods which divide queries into individual
triple patterns and then do all of the combining and confla-
tion of results centrally place a heavy processing burden on
the device responsible for combining and filtering interme-
diate results, that is, triples which match a single triple
pattern, into query results, which satisfy the criteria set out
in the query for inclusion in the query results. Advanta-
geously, by forming and issuing sub-queries in the manner
of embodiments of the present invention, some of the
processing burden is distributed among the storage servers,
and the overall query response time is reduced.

In known procedures for handling queries of distributed
triple databases, query evaluation is performed by sending
triple patterns to all data nodes as individual triple patterns
with no indication of how they are inter-related. Joining and
filtering operations are then performed centrally in order to
obtain the query results. Inefficiency is caused by the lack of
knowledge of inter-relation between triple patterns. Network
traffic is high because all triple pattern results are sent across
the network. Furthermore, the search space for joint opera-



US 9,454,567 B2

3

tions (two triple patterns joined by a variable value triple
element) is the Cartesian product of all the candidate triples.
Therefore, the processing cost is high. Embodiments of the
present invention enable filtering to be performed locally to
reduce network traffic and sub-query results from the indi-
vidual storage servers reduce the search space for operations
requiring results from two triple patterns to be joined.

The query result preparing step may include a sub-query
result gathering step comprising receiving, from any of the
storage servers among the plurality of storage servers storing
one or more triples satisfying the result criteria of one of the
formed sub-queries, a copy of those one or more triples and
storing them as sub-query results of the respective sub-
queries. Such a step enables the sub-query results to be
received and organized.

Optionally, embodiments may be configured to handle
queries in which result criteria further comprise one or more
filtering conditions each of which define, for one or more
particular IDs from among the IDs of variables, a range
within which values of the triple element attributed the 1D
must fall for a triple to be included in the query results; and
wherein the sub-query forming step further comprises form-
ing one or more sub-queries each comprising a triple pattern
specifying an ID of a variable as a variable value triple
pattern element and a filtering condition defining a range for
the specified ID.

Advantageously, forming sub-queries which include fil-
tering conditions in addition to triple patterns provides a
further opportunity to parallelize the processing, since the
storage servers are provided with the information required to
filter the results at the storage servers themselves rather than
at the device responsible for combining the results from
individual storage servers. In addition, by virtue of perform-
ing filtering at the storage servers prior to transmitting
sub-query results back to the device issuing the sub-query,
the amount of traffic being transferred is reduced. The
performance of the storage system as a whole is improved by
the reduction in network traffic achieved by filtering in a
distributed rather than centralized manner.

As an adaptation of the sub-query forming step, when one
of the filtering conditions defines the range within which
values of the triple element attributed the ID must fall for a
triple to be included in the query results with reference to
another ID of a variable, the sub-query forming step includes
joining the sub-queries for the ID and the another ID into a
single sub-query.

It can be appreciated that there is a logical link between
triple patterns containing variable IDs which variable IDs
are themselves linked by a filtering condition. For example,
it may be that a first triple pattern has an unbound object
element for which a first variable ID is specified, and a
second triple pattern has an unbound subject element for
which a second variable ID different from the first variable
1D is specified. A filtering condition may specify that values
attributed the first variable ID must not be equal to values
attributed the second variable ID. Thus, the filtering condi-
tion introduces an interdependence of the results of the two
triple patterns—the triples matching the first triple pattern
depend on the results of the second triple pattern to deter-
mine whether the sub-query is satisfied by those triples.
Furthermore, it can be appreciated that certain of the triples
matching either triple pattern may be excluded from the
query results if they do not satisfy the filtering condition of
the sub-query. Hence there is no need to transmit those
certain triples to the device combining results, and overall
network traffic is reduced.

10

15

20

25

30

35

40

45

50

55

60

65

4

As a further optional phase, the sub-query forming step
may comprise, for each single value triple pattern element or
ID of a variable appearing in more than one result criterion,
forming a sub-query comprising a copy of every result
criterion having that single value triple pattern element or ID
of a variable.

The overall performance of the method is made more
efficient by reducing the number of sub-queries whilst
ensuring that the logical links between result criteria com-
bined into single sub-queries are maintained. It can be
appreciated that reducing the number of sub-queries will
reduce network traffic and scanning at the storage servers.
Therefore, forming the sub-queries by combining all of the
result criteria linked by a particular common variable ID or
common single value of a particular triple (and if two
variable IDs are combined in a filtering condition combining
every triple pattern having either variable ID into a single
sub-query) maximizes the performance benefits of invention
embodiments.

The query result preparing step may further comprise, for
each of the formed sub-queries which comprise two or more
triple patterns having the same ID of a variable as a variable
value triple pattern element: receiving from each of the
storage servers individual triple pattern results comprising a
copy of every triple satisfying at least one of the two or more
triple patterns; removing from the received individual triple
pattern results the copies of the triples stored as sub-query
results for that sub-query; and searching the remaining
received individual triple pattern results for triples satistying
the result criteria of the sub-query, and storing those triples
as sub-query results.

It may be that there are query results which satisfy either
of the triple patterns of a sub-query but it is not possible to
determine whether a filtering condition forming part of the
same sub-query is satisfied or not without searching the
triples matching either of the triple patterns from the other
storage servers. In such cases, the above additional phases of
the sub-query result gathering step provide a mechanism for
integrating the triple pattern results into sub-query results in
an efficient manner. Embodiments of the present invention
enable the search space to be reduced by removing triples
which it is already known satisty the sub-query based on the
triples matching the triple patterns from a single storage
server.

Methods embodying the present invention may be per-
formed on a range of system architectures, as long as the
storage of triples encoding the graph database is distributed
among a plurality of storage units. The centralized database
controller is a logical entity which may be realized as a
single device or may be provided as a function of more than
one device in cooperation. Optionally, the dividing step,
sub-query forming step, sub-query issuing step and sub-
query result gathering step are performed at a centralized
database controller. The functions performed by the central-
ized database controller may be performed in a serial fash-
ion, whereas the sub-queries issued to the storage servers
can be handled by the plurality of storage servers in parallel.

In terms of processing that is parallelized by being
assigned to the storage servers, embodiments may include,
at each storage server, receiving the formed sub-queries,

scanning the triples stored on the storage server for triples
satisfying the result criteria of each of the received sub-
queries, and for each received sub-query, transferring a copy
of any triple satisfying the result criteria of the sub-query to
the other storage servers and/or the centralized database
controller as a sub-query result of the sub-query.



US 9,454,567 B2

5

The plurality of storage servers are distributed insofar as
they each have their own storage management function
configured to scan the triples stored thereon, and to combine
results of individual result criteria into a sub-query result.
Therefore, by issuing sub-queries to the storage servers
some measure of parallelization is achieved. The sub-query
results may be transferred in a manner in which they are
attributable to a particular sub-query.

The process of scanning may include identifying each
different triple pattern from among the received formed
sub-queries; prioritizing the identified different triple pat-
terns with triple patterns having more variable value triple
pattern elements being prioritized below triple patterns
having fewer variable value triple pattern elements; in order
of priority, for each of the triple patterns, scanning the triples
stored on the storage server for triples matching the triple
pattern to obtain an intermediate result set of triples; obtain-
ing sub-query results by combining the intermediate result
set of triples for each of the triple patterns in sub-queries
having more than one triple pattern, and by applying filtering
conditions to the intermediate result set of triples for each of
the triple patterns in sub-queries having filtering conditions.

Advantageously, performance benefits can be improved
by prioritizing triple patterns expected to have fewer results
so that triples matching those patterns are found first. Further
logical operations which are to be performed on the triples
can thus be commenced sooner whilst scanning for triples
matching the triple patterns expected to generate more
results (and hence take longer to perform and assemble
results from) is underway.

In addition to prioritizing on the basis of the number of
bound triple pattern elements, it may be that certain other
triple pattern elements expected to generate a large number
of results cause the triple pattern having those triple pattern
elements to be given a lower priority than other triple
patterns with the same number of bound (single value) triple
pattern elements. For example, triple patterns having triple
pattern elements corresponding to the triple elements subject
or object, and which contain “RDF” or “RDFS” as a prefix
may be given a low priority. Within those, triple pattern
elements corresponding to the triple element predicate may
be prioritized so that higher priority is given to the predicate
“rdfs:subclassof” than is given to “rdfs:label” than is given
to “rdfitype”. These further rules provide a mechanism for
identifying triple pattern elements which could give rise to
a triple pattern returning a large number of matches and
hence taking a long time to scan, and relegating them to be
low priority.

Embodiments may further comprise transferring the inter-
mediate result set of triples for each triple pattern to the
centralized database controller for integrating, or to one or
more other storage servers assigned to integrate the results
of the triple pattern by the centralized database controller.

In particular, methods embodying the invention may
further comprise at each of the storage servers, for a sub-
query comprising two or more triple patterns specifying the
same 1D of a variable as a variable value triple pattern
element, assigning one of the two or more triple patterns as
a first triple pattern and obtaining the intermediate result set
of triples for each of the one or more other triple patterns in
the sub-query from each of the other storage servers, and, for
each of triples found to match the first triple pattern on the
storage server, scanning the obtained intermediate result sets
of triples to identify pairs or groups of triples satisfying the
sub-query.

In such methods, a mechanism may be implemented to
ensure that the triple pattern assigned as the first triple

30

40

45

50

55

65

6

pattern is the same on each storage server (which may be
achieved by applying the same selection rules, or by coop-
erating with one another across the network). For example,
it may be advantageous to identify the triple pattern from
among the two or more triple patterns having the most
results (either by aggregating results across the plurality of
storage servers or by one storage server acting as a decision-
maker and selecting the triple pattern having the most
matches on that storage server) in order to reduce network
traffic (since the non-first triple pattern results are transferred
to the other storage servers).

Advantageously, the transfer of triple pattern results for
integration locally at the storage servers parallelizes the
integration processing and thus reduces bottlenecks which
may occur in a centralized process.

In embodiments of the present invention, the query may
be a SPARQL query. SPARQL queries are optimized for
querying graph databases and known techniques can be
applied to extract individual triple patterns and result criteria
from a SPARQL query. An apparatus embodying the present
invention may comprise a SPARQL interface for receiving
SPARQL queries and returning query results.

Embodiments of another aspect of the present invention
include a database controller for a database of graph data
encoded as triples, the triples each comprising values of
three triple elements and being stored on a plurality of
storage servers, the database controller comprising: a query
dividing module configured to divide a query into a plurality
of result criteria, the result criteria comprising a plurality of
triple patterns which query results must match, each triple
pattern being composed of three triple pattern elements each
corresponding to a different one of the three triple elements.
Each triple pattern element is either a single value triple
pattern element specifying a single value of the correspond-
ing triple element which triples must have to match the triple
pattern; or a variable value triple pattern element specifying
an ID of a variable, the ID being attributed to values of the
corresponding triple elements of triples matching the triple
pattern. The database controller further comprises a sub-
query forming module configured to form one or more
sub-queries each comprising two or more triple patterns
having the same single value triple pattern element or
specifying the same ID of a variable as a variable value triple
pattern element; a sub-query issuing module configured to
issue each formed sub-query to each of the plurality of
storage servers; and a query result preparing module con-
figured to receive triples satisfying at least one formed
sub-query as sub-query results from the plurality of storage
servers and use the sub-query results to prepare query results
as a response to the query.

The query result preparing module may comprise a sub-
query result gathering module configured to receive, from
any of the storage servers among the plurality of storage
servers storing one or more triples satisfying the result
criteria of one of the formed sub-queries, a copy of those one
or more triples and storing them as sub-query results of the
respective sub-queries.

Embodiments of another aspect of the present invention
include a data storage system comprising a database con-
troller embodying the present invention and a plurality of
storage servers storing the triples.

Embodiments of another aspect of the present invention
include a computer program which, when executed by one
or more computing apparatuses, causes the one or more
computing apparatuses to perform a method embodying the
present invention.



US 9,454,567 B2

7

Embodiments of another aspect of the present invention
include a computer program or suite of computer programs
which, when executed by one or more computing appara-
tuses, causes the one or more computing apparatuses to
function as a database controller or data storage system
embodying the present invention.

The sub-queries of invention embodiments reflect the
internal structure of the query. The sub-queries include triple
patterns and filtering conditions which are passed to storage
servers as a related group so that the sub-query as a whole
may be assessed on each storage server locally and a set of
triples satisfying the sub-query obtained and made available
to other devices. Furthermore, the processing involved in
joining results of triple patterns from separate storage serv-
ers may be parallelized to improve performance. As a
general rule, the more processing that is performed locally
in a parallelized fashion, the more the network traffic is
reduced and the more processing bottlenecks can be
reduced/avoided.

BRIEF DESCRIPTION OF THE DRAWINGS

These and/or other aspects and advantages will become
apparent and more readily appreciated from the following
description of the embodiments, taken in conjunction with
the accompanying drawings of which:

FIG. 1 illustrates a flow chart of method steps in a method
embodying the present invention;

FIG. 2 illustrates an exemplary system architecture of an
invention embodiment;

FIG. 3 illustrates a first example of a query pattern graph;

FIG. 4 illustrates an alternative example of a query pattern
graph; and

FIG. 5 illustrates sub-queries corresponding to the first
example.

DETAILED DESCRIPTION

Reference will now be made in detail to the embodiments,
examples of which are illustrated in the accompanying
drawings, wherein like reference numerals refer to the like
elements throughout. The embodiments are described below
to explain the present invention by referring to the figures.

FIG. 1 illustrates a flow chart of method steps in a method
embodying the present invention. The method embodying
the present invention may be, for example, a computer-
implemented method. Step S1 may be performed by a
dedicated functional module of a database controller, for
example, a query dividing module.

Step S1, dividing a query into result criteria, may include
dividing the query into result criteria comprising a plurality
of triple patterns which some or all query results must
match, each triple pattern being composed of three triple
pattern elements each corresponding to a different one of the
three triple elements. Each triple pattern element is one of a
single value triple pattern element specifying a single value
of the corresponding triple element which triples must have
to match the triple pattern; and a variable value triple pattern
element specifying an ID of a variable, the ID being attrib-
uted to values of the corresponding triple elements of triples
matching the triple pattern.

The processing rules and associated functionality required
to divide a graph database query into individual triple
patterns and other result criteria is established. For example,
the query may be a SPARQL query for which SPARQL
query engines exist for dividing the query into individual
result criteria.

10

15

20

25

30

35

40

45

50

55

60

65

8

In addition to triple patterns, result criteria may comprise
filtering conditions, which limit the values which values
attributed a particular variable ID can take. The filtering
condition may limit the values with reference to an absolute
value or values, or with reference to values attributed
another variable ID.

It may be that the individual triple patterns are connected
in the query by an ‘OR’ type logical statement, in which case
only some but not all of the query results will need to match
the individual triple patterns. That is to say, it is not
necessarily the case that all of the query results need to
satisfy all of the result criteria to be included in the query
results. Hence the triple patterns each define a pattern which
some or all of the query results must match. In combining
results according to the query the logic determining how to
combine sub-query results is extracted from the query and
applied to the sub-query results.

Step S2, forming sub-queries from result criteria, may be
performed by a dedicated functional module of a database
controller, for example, a sub-query forming module. At step
S2, sub-queries are formed from the result criteria. Each
sub-query comprises at least two result criteria which could
either be triple patterns, or a combination of triple patterns
and filtering conditions. The result criteria combined into a
particular sub-query are logically linked either by binding a
particular triple element to be the same value, or by relating
to the same variable ID (either as two triple patterns linked
by a common variable 1D, or as a triple pattern specifying a
variable ID and a filtering condition limiting values attrib-
uted that variable ID). Optionally, where a sub-query
includes a filtering condition which limits the values attrib-
uted one variable ID by reference to results of another
variable ID, triple patterns and other limiting conditions
including or relating to each of the one variable ID and the
another variable ID are included in a single sub-query. Any
single result criteria may appear in more than one sub-query,
and hence the sub-queries can be considered to be composed
of copies of result criteria. In reality of course, a result
criteria may be realized as a string or other object type on a
computer memory, which in the course of normal processing
operations will be read and written from one part of the
memory to another and to and from processing components
and hence the distinction between being the result criterion
itself or a copy of the result criterion is immaterial.

Step S3, issuing the sub-queries to the storage servers,
may be performed by a dedicated functional module of a
database controller, for example, a sub-query forming mod-
ule. Step S3 may include issuing each formed sub-query to
each of the plurality of storage servers. Issuing a sub-query
to a storage server may comprise simply sending a copy or
version of the sub-query to the storage server. Optionally,
issuing the sub-query may further comprise information on
how to structure the sub-query results and whether or not
triples matching individual triple patterns within the sub-
query are required in addition to the sub-query results. It
may be that the sub-query must be presented in a predeter-
mined format in order to be accepted and processed by the
storage servers. In such examples, the step of issuing the
sub-queries to the storage servers may include formatting
the sub-queries into the format required by each of the
storage servers. The sub-queries may be issued with an
address representing where triples satisfying the sub-query
are to be written.

Upon receiving the sub-queries, the storage servers are
each configured to scan the portion of the triples encoding
the graph database stored thereon for sub-query results. It
may be that the storage servers are configured to identify the



US 9,454,567 B2

9

individual triple patterns within a plurality of received
sub-queries, and to scan the stored triples for results match-
ing each of the individual triple patterns, before combining
the triple pattern results into sub-query results in accordance
with the logic of the sub-queries. In so doing, the storage
server ensures that it does not need to scan for triples
matching the same triple pattern twice in responding to
sub-queries formed from a single query.

The storage servers are configured to transmit copies of
triples satisfying a sub-query back to the apparatus/func-
tional module which issued the sub-query, or to an address
specified in information included in or with the sub-query.

At step S4 the sub-query results are gathered from the
storage servers. Gathering the sub-query results may include
receiving the sub-query results from the storage servers or
reading the sub-query results from an address to which the
storage servers were instructed to write the sub-query
results. It may be that the sub-queries are such that the
sub-query results from individual storage servers can simply
be aggregated to obtain an exhaustive set of results to each
of the sub-queries, which can then be combined in accor-
dance with the logic defined by the query. Alternatively, it
may be that the sub-query results from individual storage
servers represent a partial set of results to a sub-query, and
that integration of intermediate results to the individual
triple patterns composing the sub-query is required to obtain
an exhaustive set of results to the sub-query. In such cases,
the sub-query results from the individual storage servers can
be used to reduce the search space in the process of
integrating the intermediate results.

The logical architecture of a system embodying the pres-
ent invention is depicted in FIG. 2. The proposed system
includes three main logical components: a logical global
storage layer 20, a set of slave servers 30 and a logically
centralized master server 10. The global storage server 20
and centralized master server 10 are logical in the sense that
they may be realized by components distributed among
physical machines interconnected through a network,
depending on scalability needs. The global storage layer 20,
for example, may be realized by a dedicated storage section
within each of the slave servers 30, and/or a storage section
on the master server 10, and/or a dedicated separate storage
device.

The master server 10 is exemplary of a centralized data-
base controller. The master server 10 may or may not also
function as a storage server. Functional modules of the
master server 10 include a SPARQL interface 12 and a query
partitioner 14. The SPARQL interface 12 is configured to
receive queries from applications. The query partitioner 14
is exemplary of a module combining the query dividing
module, the sub-query forming module, the sub-query issu-
ing module, and/or the query result preparing module.

The slave servers 30 are exemplary of storage servers and
each comprise a map/reduce layer 34 configured to coordi-
nate scans on the stored triples and to apply logical process-
ing operations to scan results. Intermediate results, that is,
triples satisfying a sub-query or partially satistfying a sub-
query received at the slave server 30 are stored on the local
storage layer 32. In addition, the slave servers 30 include
storage units upon which a portion of the triples in the
database are stored.

The global storage layer 20 is a storage layer which may
be logically considered to be between the slave servers 30
and the master server 10, since each are able to read/write
to/from the global storage layer and hence it serves as a
mechanism for the exchange of data. Of course, it may be
that additional hardware beyond the master server 10 and

30

40

45

10

slave servers 30 and their interconnections is required to
realize the global storage layer 20, and the global storage
layer 20 merely comprises storage locations on those
devices which are accessible to one another. Alternatively, it
may be that a dedicated storage unit or storage location,
whether it be on the master server 10, a slave server 30, or
on a different device altogether, is provided as the global
storage layer 20.

Applications accessing the stored triples send SPARQL
queries to the master server 10. The master server 10 parses
the SPARQL query at the SPARQL interface 12, and at the
query partitioner 14 partitions the query into triple patterns
and filtering conditions which are then combined to form
sub-queries that can be processed separately. The sub-
queries are then issued to the slave servers 30.

Slave servers will then process the sub-queries and store
intermediate results in the local storage layer 32. Each
instance of the local storage layer 32 can be made globally
visible by means of a global storage layer 20 which enables
slave servers and the master server to read triples stored in
the local storage layers.

The function of the query partitioner 14 will now be
described in more detail. The query partitioner 14, and
specifically a query dividing module thereof, is configured
to receive a query such as a SPARQL query and to divide the
query into individual triple patterns. Processing rules and
procedures for dividing a query such as a SPARQL query
into individual triple patterns are available. A triple pattern
defines a form of triple which is required to provide a
response to the query. A triple pattern includes a mixture of
bound triple elements, which are given a single fixed value,
and variable triple elements, which are denoted by a variable
ID to be attributed to instances of the triple element.

In the following example, individual triple patterns are
combined into a query pattern graph (QPG) prior to being
formed into sub-queries. The QPG is a conceptual tool
representing how the different individual triple patterns are
related to one another. Embodiments of the present inven-
tion may or may not form an actual QPG from the individual
triple patterns. However, it is a useful mechanism for
illustrating the logical rules underlying how embodiments of
the present invention form sub-queries from individual triple
patterns.

In general, triple query patterns can be considered as a
graph with each triple pattern as a vertex and shared vari-
ables or shared bound values between triple patterns as
edges. Embodiments may divide the query into individual
triple patterns in a way which includes assigning a triple
pattern ID to each individual triple pattern.

As a first example, consider a query comprising the
following three individual triple patterns, where each pattern
is assigned a pattern ID (i.e. tpl, tp2, tp3):

tpl: (7%, pl, ?y)

tp2: (s1, p2, ?72)

tp3: (7%, p2, ?2)

A QPG of the triple patterns tpl, tp2, tp3 is illustrated in
FIG. 3. Edges of the QPG are labeled with the names of
shared variables or common bound values. For the avoid-
ance of doubt, we note that “?” represents a variable value
triple pattern element, and the character following the “?”
represents an [D of the variable value triple pattern element.
Bound values are represented by single value triple pattern
elements denoted by s/p/o to indicate whether the bound
value is a subject/predicate/object, and the numeral follow-
ing the s/p/o represents a particular value, that is, a particular
instance of s/p/o. In the example given, triples are repre-
sented by string objects, so that “s1” is a string object, in



US 9,454,567 B2

11

particular, it is an example of a subject. In the particular
example, two bound values having the same value but
relating to a different triple element are not deemed equal or
common. That is to say, if s1 and p2 are the same string, they
are not deemed to be a bound value which is shared by two
triple patterns, because they do not represent the same one
of the three triple pattern elements s/p/o.

As illustrated in FIG. 3, the QPG has three nodes: tp1, tp2,
and tp3. tpl is connected to tp3 by an arc denoted “x”,
because the variable ID “x” appears in both tp1 and tp3. tp3
is connected to tp2 by two arcs (or by an arc having two
labels), one labeled “p2”, because tp2 and tp3 both have the
same bound value of the predicate triple element, and one
labeled “z”, because the variable ID “z” appears in both tp2
and tp3.

Sub-queries are then formed by the query partitioner 14,
for example, by a sub-query forming module belonging to
the query partitioner 14. Conceptually, the sub-queries may
be considered to be formed by partitioning the QPG. Of
course, in an embodiment sub-queries may be formed by
building and then partitioning a QPG, or simply by com-
bining result criteria using rules, which rules may be con-
sidered to derive from the QPG concept.

The sub-queries may be formed using the following
sub-query forming rules, noting that a single triple pattern
may be copied into more than one sub-query. Firstly, vertices
are grouped by edge, so that all vertices linked by a
particular edge label are grouped together. Secondly, when
an edge connecting two vertices is annotated with multiple
labels, duplicate the vertices (the triple pattern) into separate
sub-queries unless they are connected by the same filter.
Finally, vertices at the boundary are duplicated if required to
separate one sub-query from another, unless the edge labels
of the two sub-queries sharing the boundary are connected
by the same filter. FIG. 5 illustrates the three sub-queries
formed by applying the above rules to the triple patterns tp1,
tp2, tp3.

In FIG. 5, the arcs indicate edges joining two triple
patterns into a sub-query. The arrows indicate the order of
priority between the two triple patterns. In the particular
example, tp2 has more bound triple pattern elements and is
therefore afforded a higher priority than either of tp1 or tp3.
In fact, each of tpl and tp3 have only one bound triple
pattern element. Slave servers 30 may be configured to break
ties in a number of ways, some of which are mentioned
elsewhere in this document. Ties may also be broken in an
apparently arbitrary fashion, for example, by alphanumeric
order of the triple pattern id or of a string formed by
concatenating the triple pattern elements of the triple pat-
terns. The slave servers may all be configured to use the
same procedure to break ties so that they each scan the triple
patterns in the same order.

When the query includes filtering conditions, the filtering
conditions are extracted from the query by the dividing
module and treated in a similar way to the triple patterns.
Triple patterns and filtering conditions can collectively be
referred to as result criteria. When filtering conditions are
included in the query, each filtering condition is included as
a vertex in the QPG and connected to other vertices based on
the variable ID attributed to the variable values being
filtered. Therefore, filtering conditions are deemed to be
treated in the same way as triple patterns.

As an alternative to the first example of a query, consider
a query divided into result criteria including a mixture of
triple patterns and filtering conditions, for example:

tpd: (7%, pl, ol)

tp5: (?y, p2, 02)

F1: (7x=?y)

A QPG constructed using the result criteria of the alter-
native example is illustrated in FIG. 4.

15

30

45

50

65

12

Applying the sub-query forming rules to the alternative
example, the formed sub-query is actually identical to FIG.
4, because the filter connects edges “x” and “y” by filtering
“x” with respect to “y”, or vice versa.

The sub-queries are then issued to the slave servers 30, for
example, by a sun-query issuing module, for processing by
the slave servers.

It may be that the slave servers 30, which are exemplary
of storage servers, receive a number of sub-queries, and
identify the different individual result criteria from the
collective sub-queries queries to prevent duplicating scans
and processing and to enable some prioritization. For
example, the prioritization may be on the basis of the
number of triples expected to result, so that triple patterns
expected to return more triples are processed (scanned for
results on the storage part of the slave server) after those
expected to return fewer triples. In that way, the additional
processing of the sub-queries having fewer results is not
delayed. In addition, the processing required to apply filter-
ing conditions may be prioritized.

The following is an exemplary set of rules for prioritizing
result criteria:

Select triple patterns with more bound triple elements
(being subject, predicate, object)

Filtering conditions should have lower priority than the
triple patterns appearing in the same sub-query. Filters with
fewer variables have higher priority than those have more
variables, since they are quicker to process.

Break ties by selecting other subject and object over
rdfixxx/rdfs:xxx (i.e. any properties prefixed by RDF/RDFS
namespace—these are expected to return a large number of
triples and hence are moved down the priority)

Break ties by selecting other types of predicates over
rdfixxx/rdfs:xxx

rdfixxx predicates are priorities in the following order:
rdfs:subclassof>rdfs:label>rdf:type (this provides a further
means by which to discriminate between triple patterns
expected to return a large number of results, and those which
are not).

The receipt of sub-queries and prioritisation of result
criteria is performed by each slave server, for example, by
the map/reduce layer 34. Once the prioritisation has been
performed, the triple pattern with the highest priority is
scanned, and so on. Alternatively, the triple patterns may be
scanned in any order. Scanning a triple pattern includes
scanning the triples stored on a slave server for triples
matching the triple pattern and storing copies of the triples
matching the triple pattern as an intermediate result set of
triples. Each slave server scans the portion of the triples in
the database which are stored on that slave server.

Once the slave servers have the intermediate set of triples
for each triple pattern, further processing is performed on a
per triple pattern basis to identify, for each sub-query, a set
of triples which match all of the result criteria in the
sub-query and are hence considered sub-query results. The
sub-query results are transferred to the database controller,
such as the master server and/or to the fellow slave servers,
for example, by writing the sub-query results to the global
storage layer 20.

In some cases, it may be that the sub-query cannot be
assessed on a purely local basis, that is to say, some
knowledge of the triples matching a triple pattern from the
sub-query and stored on other slave servers is required. In
such cases, the triple pattern matches from the individual
slave servers are written to the global storage layer or
otherwise made available to the other slave servers. Each
slave server is then configured to search the global results
(the aggregation of the triples matching the triple pattern



US 9,454,567 B2

13

across the distributed network) to find sub-query results. It
may be that the search space is reduced by excluding triples
which are already identified as sub-query results, for
example, as a result of the previous local processing. Fur-
thermore, some assignment of responsibility between slave
servers may be performed, for example, by the centralised
database controller, so that processing work is not duplicated
among slave servers.

To illustrate such cases, consider the following example:

p6: (7%, pl, ?y)

tp7: (7y, p2, ?7)

tp6 and tp7 are linked by the variable ID “y”, and hence
are formed into a sub-query. When the sub-query is sent to
the slave servers, either tp6 or tp7 will be scanned first.
Hence, an intermediate set of results for ?y is produces.
Once the second of tp6 and tp7 is scanned, the list of results
for ?y and hence ?x and ?z is partially instantiated. However,
none of the results of tp6 or tp7 can be excluded from a list
of potential triples satisfying the entire sub-query without
knowledge of triples matching tp6 and tp7 stored on other
slave servers. Thus, the partial instantiation of ?x and ?z
reduces the search space of further integration operations,
but the triples matching tp6 and tp7 are made available to
other slave servers so that ?x and ?z can be fully instantiated,
and the triples having those instances returned as sub-query
results.

Once results of the individual sub-queries have been
assembled, the individual sub-query results can be processed
to produce a set of query results, according to the logic
determined by the form of the query itself. For example, it
may be that the query was structured in such a way that a
triple matching any of the sub-queries satisfies the query and
is included in the query results. Alternatively, it may be that
additional joining of sub-query results or filtering is required
in order to find the query results. The logic determining the
combination of sub-query results into query results is
defined by the query itself, and hence the master server 10,
or a query planning, query handling or query executing
module or process thereof has the functionality to determine
the logical processing necessary to combine the obtained
sub-query results into query results. Preparing the query
results may be performed by a centralised function such as
a database controller or master server, or may be performed
by one or more of the slave servers operating in parallel.

In any of the above aspects, the various features may be
implemented in hardware, or as software modules running
on one or more processors. Features of one aspect may be
applied to any of the other aspects.

The invention also provides a computer program or a
computer program product for carrying out any of the
methods described herein, and a computer readable medium
having stored thereon a program for carrying out any of the
methods described herein. A computer program embodying
the invention may be stored on a computer-readable
medium, or it could, for example, be in the form of a signal
such as a downloadable data signal provided from an
Internet website, or it could be in any other form.

Although a few embodiments have been shown and
described, it would be appreciated by those skilled in the art
that changes may be made in these embodiments without
departing from the principles and spirit of the invention, the
scope of which is defined in the claims and their equivalents.

The invention claimed is:

1. A querying method for a database of graph data
encoded as triples, the triples each comprising values of
three triple elements and being stored on a plurality of
storage servers, the method comprising:

10

15

25

30

40

45

50

60

14

at a centralized database controller, a dividing step com-
prising dividing a query into a plurality of result
criteria, the result criteria being a triple pattern which
some or all query results must match, each triple pattern
is composed of three triple pattern elements each
corresponding to a different one of the three triple
elements;
each triple pattern element being either one of:

a single value triple pattern element specifying a
single value of the corresponding triple element
which triples must have to match the triple pattern;
or

a variable value triple pattern element specifying an
ID of a variable, the ID being attributed to values
of the corresponding triple elements of triples
matching the triple pattern;

at the centralized database controller, a sub-query forming

step comprising, forming one or more sub-queries each
comprising two or more triple patterns having the same
single value triple pattern element or specifying the
same ID of a variable as a variable value triple pattern
element;

at the centralized database controller, a sub-query issuing

step comprising issuing each formed sub-query to each
of the plurality of storage servers;

at each storage server:

receiving the formed sub-queries,

scanning the triples stored on the storage server for triples

satisfying the result criteria of each of the received
sub-queries, and,

for each received sub-query, transferring a copy of any

triple satisfying the result criteria of the sub-query to
the other storage servers and/or the centralized database
controller as a sub-query result of the sub-query,
wherein the scanning comprises:

identifying each different triple pattern from among the

received formed sub queries;

prioritizing the identified different triple patterns with

triple patterns having more variable value triple pattern
elements being prioritized below triple patterns having
fewer variable value triple pattern elements;

in order of priority, for each of the triple patterns, scan-

ning the triples stored on the storage server for triples
matching the triple pattern to obtain an intermediate
result set of triples; and

obtaining sub-query results by combining the intermedi-

ate result set of triples for

each of'the triple patterns in sub-queries having more than

one triple pattern, and by applying filtering conditions
to the intermediate result set of triples for each of the
triple patterns in sub-queries having filtering condi-
tions;

the method further comprising:

at the centralized database controller, a query result pre-

paring step comprising

receiving the sub-query results from the plurality of

storage servers and using the sub-query results to
prepare query results as a response to the query.

2. A method according to claim 1, wherein result criteria
further comprise one or more filtering conditions each of
which define, for one or more particular IDs from among the
IDs of variables, a range within which values of the triple
element attributed the ID must fall for a triple to be included
in the query results; and

the sub-query forming step further comprises forming one

or more sub-queries each comprising a triple pattern



US 9,454,567 B2

15

specifying an ID of a variable as a variable value triple
pattern element and a filtering condition defining a
range for the specified ID.
3. A method according to claim 2, the sub-query forming
step further comprising, when one of the filtering conditions
defines the range within which values of the triple element
attributed the ID must fall for a triple to be included in the
query results with reference to another ID of a variable,
joining the sub-queries for the ID and the another ID into a
single sub-query.
4. A method according to claim 1, wherein the sub-query
forming step comprises, for each single value triple pattern
element or ID of a variable appearing in more than one result
criterion, forming a sub-query comprising a copy of every
result criterion having that single value triple pattern ele-
ment or ID of a variable.
5. A method according to claim 1, wherein the query result
preparing step further comprises, for each of the formed
sub-queries which comprise two or more triple patterns
having the same ID of a variable as a variable value triple
pattern element:
receiving from each of the storage servers individual
triple pattern results comprising a copy of every triple
satisfying at least one of the two or more triple patterns;

removing from the received individual triple pattern
results the copies of the triples stored as sub-query
results for that sub-query; and

searching the remaining received individual triple pattern

results for triples satistfying the result criteria of the
sub-query, and storing those triples as sub-query
results.

6. A method according to claim 1, further comprising at
each of the storage servers, for a sub-query comprising two
or more triple patterns specifying the same ID of a variable
as a variable value triple pattern element, assigning one of
the two or more triple patterns as a first triple pattern and
obtaining the intermediate result set of triples for each of the
one or more other triple patterns in the sub-query from each
of the other storage servers, and, for each of triples found to
match the first triple pattern on the storage server, scanning
the obtained intermediate result sets of triples to identify
pairs or groups of triples satistying the sub-query.

7. A method according to claim 1, wherein:

the query result preparing step includes obtaining the

query results by combining the sub-query results of
each of the sub-queries according to the query.

8. A method according to claim 1, wherein the query is a
SPARQL query (SPARQL Protocol and RDF Query Lan-
guage).

9. A non-transitory computer readable storage medium
storing a computer program which, when executed by one or
more computing apparatuses, causes the one or more com-
puting apparatuses to perform the method according to any
of claim 1.

10. A system comprising a database controller for a
database of graph data encoded as triples, and a plurality of
storage servers for storing the database, the triples each
comprising values of three triple elements and being stored
on the plurality of storage servers, the database controller
comprising:

10

15

20

25

30

35

40

45

50

55

16

a processor; and

a memory which stores a plurality of instructions, which
when executed by the processor, cause the processor to
execute,

dividing a query into a plurality of result criteria, the

result criteria comprising a plurality of triple patterns
which query results must match, each triple pattern
being composed of three triple pattern elements each
corresponding to a different one of the three triple
elements;

each triple pattern element being either one of:

a single value triple pattern element specifying a
single value of the corresponding triple element
which triples must have to match the triple pattern;
and

a variable value triple pattern element specifying an
ID of a variable, the ID being attributed to values
of the corresponding triple elements of triples
matching the triple pattern

forming one or more sub-queries each comprising two or

more triple patterns having the same single value triple
pattern element or specifying the same ID of a variable
as a variable value triple pattern element; and

issuing each formed sub-query to each of the plurality of

storage servers;

each of the storage servers being configured to: receive

the formed sub-queries, scan the triples stored on the
storage server for triples satisfying the result criteria of
each of the received sub-queries, and, for each received
sub-query, transfer a copy of any triple satistying the
result criteria of the sub-query to the other storage
servers and/or the centralized database controller as a
sub-query result of the sub-query, wherein the scanning
comprises:

identifying each different triple pattern from among the

received formed sub-queries;

prioritizing the identified different triple patterns with

triple patterns having more variable value triple pattern
elements being prioritized below triple patterns having
fewer variable value triple pattern elements;

in order of priority, for each of the triple patterns, scan-

ning the triples stored on the storage server for triples
matching the triple pattern to obtain an intermediate
result set of triples; and

obtaining sub-query results by combining the intermedi-

ate result set of triples for each of the triple patterns in
sub-queries having more than one triple pattern, and by
applying filtering conditions to the intermediate result
set of triples for each of the triple patterns in sub-
queries having filtering conditions:

the processor triples satisfying at least one formed sub-

query as sub-query results from the plurality of storage
servers and use the sub-query results to prepare query
results as a response to the query.

11. A computer program which, when executed by one or
more computing apparatuses, causes the one or more com-
puting apparatuses to function as the database controller
according to claim 10.

#* #* #* #* #*



